Evaluasi Perilaku Tanah Dasar Embung Rano Tadulako terhadap Pengaruh Gempa
DOI:
https://doi.org/10.52722/zj8j2t19Keywords:
Embung Rano Tadulako, daya dukung dinamis, gempa, stabilitas tanah dasar, Metode PseudostatikAbstract
Palu City is an earthquake-prone area, notably marked by the September 28, 2018 earthquake (Mw 7.4) which caused significant damage. Rano Tadulako Reservoir serves as a crucial raw water supply for Tadulako University, necessitating evaluation of its subgrade stability against seismic effects. This study evaluates subgrade stability through dynamic bearing capacity analysis using the pseudostatic method. Primary data includes Cone Penetration Tests at 4 points across 20 cross-sections, while secondary data comprises seismic parameters showing PGA = 0.919 g. Analysis involved calculating horizontal seismic coefficient (kh = 0.46), ultimate bearing capacity using Terzaghi's method, and seismic capacity reduction. Results show 84% of the reservoir (16 of 19 segments) meets safety criteria with SF ≥ 1.5, ranging from 0.150 to 7.402. Critical points were identified at segments 9-10 with SF = 0.150. Overall, the subgrade is relatively safe, though local reinforcement and continuous monitoring are essential for long-term stability.
Downloads
References
[1] M. Acharya and I. P. Acharya, “Reliability Analysis of Bearing Capacity of Shallow Foundation on c-φ Soil,” J. Adv. Civ. Eng. Mater., vol. 5, pp. 71–78, 2019, doi: 10.3126/JACEM.V5I0.26690.
[2] M. Al-Arafat, M. E. Kabir, A. Dasgupta, and O. F. Nahid, “Designing earthquake-resistant foundations: a geotechnical perspective on seismic load distribution and soil-structure interaction,” Asian J. Sci. Technol. Eng. Math., vol. 4, no. 4, pp. 19–36, 2024, doi: 10.69593/ajsteme.v4i04.119.
[3] Y. M. Cheng and Z. Y. Chen, “Calculation of Earthwork Allocation,” in Soil Slope Stability Analysis: Theory, Methods and Programs, Science Press, 2013, pp. 23–45.
[4] M. G. Cilia, W. D. Mooney, and C. Nugroho, “Field Insights and Analysis of the 2018 Mw 7.5 Palu, Indonesia Earthquake, Tsunami and Landslides,” Pure Appl. Geophys., 2021, doi: 10.1007/S00024-021-02852-6.
[5] S. Collico, M. Arroyo, and M. Devincenzi, “A simple approach to probabilistic CPTu-based geotechnical stratigraphic profiling,” Comput. Geotech., 2024, doi: 10.1016/j.compgeo.2023.105905.
[6] B. M. Das, Principles of Foundation Engineering. Cengage Learning, 2010.
[7] M. E. Hynes-Griffin and A. G. Franklin, “Rationalizing the Seismic Coefficient Method,” US Army Corps of Engineers Waterways Experiment Station, 1984.
[8] D. A. Lestari and N. S. Fitriasari, “Determination of Earthquake Prone Zones at University of Tadulako Based on Dominant Periods and Peak Ground Acceleration ( PGA )”, doi: 10.1088/1757-899X/1212/1/012037.
[9] S. T. Suhartati, “Pembuatan Program Bantu Klasifikasi Jenis Tanah Berdasarkan Uji I CPT(u) dengan Metode ROBERTSON (1990) Menggunakan MICROSOFT EXCEL.,” Pros. Semin. Intelekt. Muda., 2019, doi: https://doi.org/10.25105/psia.v1i1.5907.
[10] D. W. E. Simarangkir, C. V. N. Sianturi, and F. N. A. S. Sari, “Implikasi Hukum Lingkungan terhadap Pengelolaan Limbah Plastik dengan Recycle Waste,” vol. 1, no. 5, pp. 173–182, 2024, doi: 10.62383/aliansi.v1i5.399.
[11] “Data-driven soil profile characterization using statistical methods and artificial intelligence algorithms,” CRC Press, 2022, pp. 708–714. doi: 10.1201/9781003329091-104.
[12] K. (n. d. . Karimi, S., Hazeghian, M., & Barkhordari, “A Numerical Assessment of the Horizontal Seismic Coefficient for Soil-Nailed Walls.”, [Online]. Available: https://doi.org/10.24200/j30.2024.62608.3235
[13] A. Yazdandoust, M., & Ghalandarzadeh, “Pseudo-static coefficient in reinforced soil structures. Pseudo-static coefficient in reinforced soil structures.,” Int. J. Phys. Model. Geotech., pp. 1–48, 2019, [Online]. Available: https://doi.org/10.1680/JPHMG.18.00013
[14] A. Shiuly, “Global Attenuation Relationship for Estimating Peak Ground Acceleration,” J. Geol. Soc. India, vol. 92, no. 1, pp. 54–58, 2018, doi: 10.1007/S12594-018-0952-4.
[15] D. Han, X. Xie, L. Zheng, and L. Huang, “The bearing capacity factor Nγ of strip footings on c-ϕ-γ soil using the method of characteristics,” Springerplus, vol. 5, no. 1, 2016, doi: 10.1186/S40064-016-3084-6.
[16] A. S. Kumbhojkar, “Numerical Evaluation of Terzaghi’s Nγ,” J. Geotech. Eng., vol. 119, no. 3, pp. 598–607, 1993, doi: 10.1061/(ASCE)0733-9410(1993)119:3(598).
[17] R. J. Krizek, “Approximation for Terzaghi’s Bearing Capacity,” J. Soil Mech. Found. Div., vol. 91, no. 2, pp. 1–4, 1965.
[18] A. L. Epps and E. T. Corey, “A Modification to the Average End Area Method for Volumes,” Transp. Res. Rec., vol. 1288, pp. 21–29, 1990.
[19] S. L. Kramer, Geotechnical Earthquake Engineering. Prentice Hall, 1996.


