Performa Kuat Tekan Mortar Geopolimer Berbasis Fly Ash dengan Variasi Rasio Alkali Aktivator
Performa Kuat Tekan Mortar Geopolimer Berbasis Fly Ash dengan Variasi
DOI:
https://doi.org/10.52722/3y5tev29Kata Kunci:
Geopolimer, Abu terbang, Aktivator Alkali, Rasio W/C, Kuat TekanAbstrak
Penelitian ini bertujuan untuk mengevaluasi pengaruh variasi komposisi alkali aktivator terhadap kuat tekan mortar geopolimer berbasis abu terbang tipe F. Abu terbang diperoleh dari PLTU Mpanau dan diaktivasi menggunakan kombinasi Sodium Silikat (Na₂SiO₃) dan Sodium Hidroksida (NaOH). Benda uji berupa mortar berbentuk kubus berukuran 50 × 50 × 50 mm, dengan rasio massa abu terbang terhadap pasir sebesar 1 : 2,75 dan rasio air terhadap padatan (w/s) sebesar 0,35. Variasi dosis aktivator yang digunakan adalah 25%, 40%, dan 55% terhadap berat abu terbang, dengan perbandingan Sodium Silikat terhadap total aktivator (W/A) sebesar 0; 0,3; 0,5; 0,7; dan 1. Pengujian kuat tekan dilakukan pada umur 3, 7, 14, dan 28 hari untuk mengevaluasi perkembangan kekuatan mekanik seiring waktu. Hasil menunjukkan bahwa peningkatan dosis aktivator dan nilai W/A secara signifikan mempengaruhi karakteristik kuat tekan mortar. Kuat tekan optimum sebesar 24,72 MPa tercapai pada komposisi dosis aktivator 55% dan rasio W/A 0,5 pada umur 28 hari. Nilai tersebut menunjukkan bahwa mortar geopolimer dengan komposisi tersebut memiliki potensi untuk diaplikasikan sebagai elemen struktural alternatif yang ramah lingkungan.Unduhan
Referensi
[1] K. Behfarnia and M. Rostami, “An assessment on parameters affecting the carbonation of alkali-activated slag concrete,” J Clean Prod, vol. 157, Apr. 2017, doi: 10.1016/j.jclepro.2017.04.097.
[2] A. Adam, “Strength and durability properties of alkali activated slag and fly ash-based geopolymer concrete,” no. August, 2009.
[3] A. A. Adam, “The Effects of Water to Solid Ratio, Activator to Binder Ratio, and Lime Proportion on the Compressive Strength of Ambient-Cured Geopolymer Concrete,” Journal of the Civil Engineering Forum, vol. 5, no. 2, p. 161, 2019, doi: 10.22146/jcef.43878.
[4] A. Ourgessa, A. Tasew, and R. Hafa, “The Effect of Alkaline Concentration and Curing Temperature on the Durability of Fly Ash Geopolymer Mortar,” Adv Mat Res, vol. 1172, pp. 95–107, Jun. 2022, doi: 10.4028/p-ceit32.
[5] R. Bharathi Murugan, S. Takkellapati, K. Kannapiran, and S. Nagan, “Geopolymer concrete - A green concrete,” International Journal of Earth Sciences and Engineering, vol. 5, pp. 1738–1744, Jan. 2012.
[6] S. Qaidi et al., “Fly Ash-Based Geopolymer Composites: A Review of the Compressive Strength and Microstructure Analysis,” Materials, vol. 15, no. 20, 2022, doi: 10.3390/ma15207098.
[7] P. Nath and P. K. Sarker, “Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition,” Constr Build Mater, vol. 66, pp. 163–171, 2014, doi: https://doi.org/10.1016/j.conbuildmat.2014.05.080.
[8] M. Alhawat, A. Ashour, G. Yildirim, A. Aldemir, and M. Sahmaran, “Properties of geopolymers sourced from construction and demolition waste: A review,” Journal of Building Engineering, vol. 50, p. 104104, 2022, doi: https://doi.org/10.1016/j.jobe.2022.104104.
[9] M. Nasir, A. H. Mahmood, and A. A. Bahraq, “History, recent progress, and future challenges of alkali-activated binders – An overview,” Constr Build Mater, vol. 426, p. 136141, 2024, doi: https://doi.org/10.1016/j.conbuildmat.2024.136141.
[10] D. Hardjito, S. E. Wallah, D. Hardjito, S. E. Wallah, D. M. J. Sumajouw, and B. V Rangan, “Introducing Fly Ash-based Geopolymer Concrete: Manufacture and Engineering Properties,” 30 th Conference on OUR WORLD IN CONCRETE & STRUCTURES, no. January 2005, pp. 23–24, 2005, [Online]. Available: https://www.researchgate.net/publication/43649846
[11] ASTM C109 / C109M, The standard’s title, such as “Standard Test Method for Compressive Strength of Hydraulic Cement Mortars.” West Conshohocken, PA 19428-2959, United States: ASTM International, 2016. doi: 10.1520/C0109_C0109M-20.
[12] A. Rajarajeswari and G. Dhinakaran, “Compressive strength of GGBFS based GPC under thermal curing,” Constr Build Mater, vol. 126, pp. 552–559, 2016, doi: https://doi.org/10.1016/j.conbuildmat.2016.09.076.
[13] M. Morsy, S. Alsayed, Y. Al-Salloum, and T. Almusallam, “Effect of Sodium Silicate to Sodium Hydroxide Ratios on Strength and Microstructure of Fly Ash Geopolymer Binder,” Arab J Sci Eng, vol. 39, pp. 4333–4339, Jun. 2014, doi: 10.1007/s13369-014-1093-8.
[14] Y. Zuo, M. Nedeljković, and G. Ye, “Pore solution composition of alkali-activated slag/fly ash pastes,” Cem Concr Res, vol. 115, pp. 230–250, 2019, doi: 10.1016/j.cemconres.2018.10.010.
[15] M. Felix Wijaya, M. Olivia*, and E. Saputra, “Kuat Tekan Mortar Geopolimer Abu Terbang Hybrid menggunakan Semen Portland,” Jurnal Teknik, vol. 13, no. 1, pp. 60–68, 2019, doi: 10.31849/teknik.v13i1.2914.
[16] R. Tänzer, Y. Jin, and D. Stephan, “Effect of the inherent alkalis of alkali activated slag on the risk of alkali silica reaction,” Cem Concr Res, vol. 98, no. April, pp. 82–90, 2017, doi: 10.1016/j.cemconres.2017.04.009.
[17] D. A. Syaputra, F. R. Nugroho, H. Ay Lie, and Purwanto, “Studi Experimental Pengaruh Perbedaan Molaritas Aktivator Pada Perilaku Beton Geopolimer Berbahan Dasar Fly Ash,” Jurnal Karya Teknik Sipil, vol. 7, no. 1, pp. 89–98, 2018.
[18] M. Olivia and H. Nikraz, “Properties of fly ash geopolymer concrete designed by Taguchi method,” Materials & Design (1980-2015), vol. 36, pp. 191–198, 2012, doi: https://doi.org/10.1016/j.matdes.2011.10.036.
[19] B. Oktaviastuti, G. Pandulu, and E. Lusyana, “Kuat Tekan Beton Geopolymer Berbahan Dasar Abu Terbang (Fly Ash) Sebagai Alternatif Perkerasan Kaku di Daerah Pesisir,” Reka Buana : Jurnal Ilmiah Teknik Sipil dan Teknik Kimia, vol. 6, pp. 78–87, Mar. 2021, doi: 10.33366/rekabuana.v6i1.2271.
[20] I. Loekito and A. Wardhono, “PENGARUH VARIASI NaOH DAN Na2SiO3 TERHADAP KUAT TEKAN DRY GEOPOLYMER MORTAR PADA KONDISI RASIO FLY ASH TERHADAP AKTIFATOR 2,5 : 1,” 2018.