Performa Kuat Tekan Mortar Geopolimer Berbasis Fly Ash dengan Variasi Rasio Alkali Aktivator

Performa Kuat Tekan Mortar Geopolimer Berbasis Fly Ash dengan Variasi

Authors

  • Sri Nur Akifa Universita Tadulako Author
  • Medi Tikara Universitas Tadulako Author
  • Andi Arham Adam Universitas Tadulako Author
  • Bayu Rahmat Ramadhan Universitas Tadulako Author
  • Suci Amalia Namira Wahidin Universitas Tadulako Author

DOI:

https://doi.org/10.52722/3y5tev29

Keywords:

Geopolimer, Abu terbang, Aktivator Alkali, Rasio W/C, Kuat Tekan

Abstract

The demand for environmentally friendly construction materials is increasing in line with efforts to reduce carbon emissions and utilize industrial waste. Portland cement contributes approximately 8% of global CO₂ emissions. Geopolymers, derived from aluminosilicate-based fly ash, have been developed as an alternative to conventional cement. The aim of this study is to evaluate the effect of varying alkali activator compositions on the compressive strength of fly ash-based geopolymer mortar type F. The fly ash was obtained from the Mpanau power plant and activated using a combination of Sodium Silicate (Na₂SiO₃) and Sodium Hydroxide (NaOH). The samples were prepared in the form of 50 × 50 × 50 mm cube mortars with a mass ratio of fly ash to sand of 1:2.75 and a water-to-solid ratio (w/s) of 0.35. The activator dosages applied were 25%, 40%, and 55% of the fly ash weight, with the ratio of Sodium Silicate to total activator (W/A) set at 0, 0.3, 0.5, 0.7, and 1. Compressive strength tests were conducted at curing ages of 3, 7, 14, and 28 days to assess the development of mechanical properties over time. The results indicated that increasing both the activator dosage and W/A ratio significantly affected the compressive strength characteristics of the mortar. The optimum compressive strength of 24.72 MPa was achieved with an activator dosage of 55% and a W/A ratio of 0.5 at 28 days. These findings suggest that geopolymer mortar with this composition has the potential to be applied as an environmentally friendly alternative structural material.

Downloads

Download data is not yet available.

References

[1] K. Behfarnia and M. Rostami, “An assessment on parameters affecting the carbonation of alkali-activated slag concrete,” J Clean Prod, vol. 157, Apr. 2017, doi: 10.1016/j.jclepro.2017.04.097.

[2] A. Adam, “Strength and durability properties of alkali activated slag and fly ash-based geopolymer concrete,” no. August, 2009.

[3] A. A. Adam, “The Effects of Water to Solid Ratio, Activator to Binder Ratio, and Lime Proportion on the Compressive Strength of Ambient-Cured Geopolymer Concrete,” Journal of the Civil Engineering Forum, vol. 5, no. 2, p. 161, 2019, doi: 10.22146/jcef.43878.

[4] A. Ourgessa, A. Tasew, and R. Hafa, “The Effect of Alkaline Concentration and Curing Temperature on the Durability of Fly Ash Geopolymer Mortar,” Adv Mat Res, vol. 1172, pp. 95–107, Jun. 2022, doi: 10.4028/p-ceit32.

[5] R. Bharathi Murugan, S. Takkellapati, K. Kannapiran, and S. Nagan, “Geopolymer concrete - A green concrete,” International Journal of Earth Sciences and Engineering, vol. 5, pp. 1738–1744, Jan. 2012.

[6] S. Qaidi et al., “Fly Ash-Based Geopolymer Composites: A Review of the Compressive Strength and Microstructure Analysis,” Materials, vol. 15, no. 20, 2022, doi: 10.3390/ma15207098.

[7] P. Nath and P. K. Sarker, “Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition,” Constr Build Mater, vol. 66, pp. 163–171, 2014, doi: https://doi.org/10.1016/j.conbuildmat.2014.05.080.

[8] M. Alhawat, A. Ashour, G. Yildirim, A. Aldemir, and M. Sahmaran, “Properties of geopolymers sourced from construction and demolition waste: A review,” Journal of Building Engineering, vol. 50, p. 104104, 2022, doi: https://doi.org/10.1016/j.jobe.2022.104104.

[9] M. Nasir, A. H. Mahmood, and A. A. Bahraq, “History, recent progress, and future challenges of alkali-activated binders – An overview,” Constr Build Mater, vol. 426, p. 136141, 2024, doi: https://doi.org/10.1016/j.conbuildmat.2024.136141.

[10] D. Hardjito, S. E. Wallah, D. Hardjito, S. E. Wallah, D. M. J. Sumajouw, and B. V Rangan, “Introducing Fly Ash-based Geopolymer Concrete: Manufacture and Engineering Properties,” 30 th Conference on OUR WORLD IN CONCRETE & STRUCTURES, no. January 2005, pp. 23–24, 2005, [Online]. Available: https://www.researchgate.net/publication/43649846

[11] ASTM C109 / C109M, The standard’s title, such as “Standard Test Method for Compressive Strength of Hydraulic Cement Mortars.” West Conshohocken, PA 19428-2959, United States: ASTM International, 2016. doi: 10.1520/C0109_C0109M-20.

[12] A. Rajarajeswari and G. Dhinakaran, “Compressive strength of GGBFS based GPC under thermal curing,” Constr Build Mater, vol. 126, pp. 552–559, 2016, doi: https://doi.org/10.1016/j.conbuildmat.2016.09.076.

[13] M. Morsy, S. Alsayed, Y. Al-Salloum, and T. Almusallam, “Effect of Sodium Silicate to Sodium Hydroxide Ratios on Strength and Microstructure of Fly Ash Geopolymer Binder,” Arab J Sci Eng, vol. 39, pp. 4333–4339, Jun. 2014, doi: 10.1007/s13369-014-1093-8.

[14] Y. Zuo, M. Nedeljković, and G. Ye, “Pore solution composition of alkali-activated slag/fly ash pastes,” Cem Concr Res, vol. 115, pp. 230–250, 2019, doi: 10.1016/j.cemconres.2018.10.010.

[15] M. Felix Wijaya, M. Olivia*, and E. Saputra, “Kuat Tekan Mortar Geopolimer Abu Terbang Hybrid menggunakan Semen Portland,” Jurnal Teknik, vol. 13, no. 1, pp. 60–68, 2019, doi: 10.31849/teknik.v13i1.2914.

[16] R. Tänzer, Y. Jin, and D. Stephan, “Effect of the inherent alkalis of alkali activated slag on the risk of alkali silica reaction,” Cem Concr Res, vol. 98, no. April, pp. 82–90, 2017, doi: 10.1016/j.cemconres.2017.04.009.

[17] D. A. Syaputra, F. R. Nugroho, H. Ay Lie, and Purwanto, “Studi Experimental Pengaruh Perbedaan Molaritas Aktivator Pada Perilaku Beton Geopolimer Berbahan Dasar Fly Ash,” Jurnal Karya Teknik Sipil, vol. 7, no. 1, pp. 89–98, 2018.

[18] M. Olivia and H. Nikraz, “Properties of fly ash geopolymer concrete designed by Taguchi method,” Materials & Design (1980-2015), vol. 36, pp. 191–198, 2012, doi: https://doi.org/10.1016/j.matdes.2011.10.036.

[19] B. Oktaviastuti, G. Pandulu, and E. Lusyana, “Kuat Tekan Beton Geopolymer Berbahan Dasar Abu Terbang (Fly Ash) Sebagai Alternatif Perkerasan Kaku di Daerah Pesisir,” Reka Buana : Jurnal Ilmiah Teknik Sipil dan Teknik Kimia, vol. 6, pp. 78–87, Mar. 2021, doi: 10.33366/rekabuana.v6i1.2271.

[20] I. Loekito and A. Wardhono, “PENGARUH VARIASI NaOH DAN Na2SiO3 TERHADAP KUAT TEKAN DRY GEOPOLYMER MORTAR PADA KONDISI RASIO FLY ASH TERHADAP AKTIFATOR 2,5 : 1,” 2018.

Downloads

Published

2025-08-22

How to Cite

[1]
Sri Nur Akifa, M. Tikara, A. A. Adam, B. R. Ramadhan, and S. A. N. Wahidin, “Performa Kuat Tekan Mortar Geopolimer Berbasis Fly Ash dengan Variasi Rasio Alkali Aktivator: Performa Kuat Tekan Mortar Geopolimer Berbasis Fly Ash dengan Variasi”, PCEJ, vol. 7, no. 3, pp. 370–380, Aug. 2025, doi: 10.52722/3y5tev29.